3.771 \(\int (a+b \cos (c+d x)) (B \cos (c+d x)+C \cos ^2(c+d x)) \, dx\)

Optimal. Leaf size=84 \[ \frac {(3 a B+2 b C) \sin (c+d x)}{3 d}+\frac {(a C+b B) \sin (c+d x) \cos (c+d x)}{2 d}+\frac {1}{2} x (a C+b B)+\frac {b C \sin (c+d x) \cos ^2(c+d x)}{3 d} \]

[Out]

1/2*(B*b+C*a)*x+1/3*(3*B*a+2*C*b)*sin(d*x+c)/d+1/2*(B*b+C*a)*cos(d*x+c)*sin(d*x+c)/d+1/3*b*C*cos(d*x+c)^2*sin(
d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 104, normalized size of antiderivative = 1.24, number of steps used = 2, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {3023, 2734} \[ \frac {\left (a^2 (-C)+3 a b B+2 b^2 C\right ) \sin (c+d x)}{3 b d}+\frac {(3 b B-a C) \sin (c+d x) \cos (c+d x)}{6 d}+\frac {1}{2} x (a C+b B)+\frac {C \sin (c+d x) (a+b \cos (c+d x))^2}{3 b d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])*(B*Cos[c + d*x] + C*Cos[c + d*x]^2),x]

[Out]

((b*B + a*C)*x)/2 + ((3*a*b*B - a^2*C + 2*b^2*C)*Sin[c + d*x])/(3*b*d) + ((3*b*B - a*C)*Cos[c + d*x]*Sin[c + d
*x])/(6*d) + (C*(a + b*Cos[c + d*x])^2*Sin[c + d*x])/(3*b*d)

Rule 2734

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((2*a*c
+ b*d)*x)/2, x] + (-Simp[((b*c + a*d)*Cos[e + f*x])/f, x] - Simp[(b*d*Cos[e + f*x]*Sin[e + f*x])/(2*f), x]) /;
 FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int (a+b \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx &=\frac {C (a+b \cos (c+d x))^2 \sin (c+d x)}{3 b d}+\frac {\int (a+b \cos (c+d x)) (2 b C+(3 b B-a C) \cos (c+d x)) \, dx}{3 b}\\ &=\frac {1}{2} (b B+a C) x+\frac {\left (3 a b B-a^2 C+2 b^2 C\right ) \sin (c+d x)}{3 b d}+\frac {(3 b B-a C) \cos (c+d x) \sin (c+d x)}{6 d}+\frac {C (a+b \cos (c+d x))^2 \sin (c+d x)}{3 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 75, normalized size = 0.89 \[ \frac {3 (4 a B+3 b C) \sin (c+d x)+3 (a C+b B) \sin (2 (c+d x))+6 a c C+6 a C d x+6 b B c+6 b B d x+b C \sin (3 (c+d x))}{12 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])*(B*Cos[c + d*x] + C*Cos[c + d*x]^2),x]

[Out]

(6*b*B*c + 6*a*c*C + 6*b*B*d*x + 6*a*C*d*x + 3*(4*a*B + 3*b*C)*Sin[c + d*x] + 3*(b*B + a*C)*Sin[2*(c + d*x)] +
 b*C*Sin[3*(c + d*x)])/(12*d)

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 60, normalized size = 0.71 \[ \frac {3 \, {\left (C a + B b\right )} d x + {\left (2 \, C b \cos \left (d x + c\right )^{2} + 6 \, B a + 4 \, C b + 3 \, {\left (C a + B b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorithm="fricas")

[Out]

1/6*(3*(C*a + B*b)*d*x + (2*C*b*cos(d*x + c)^2 + 6*B*a + 4*C*b + 3*(C*a + B*b)*cos(d*x + c))*sin(d*x + c))/d

________________________________________________________________________________________

giac [A]  time = 0.19, size = 68, normalized size = 0.81 \[ \frac {1}{2} \, {\left (C a + B b\right )} x + \frac {C b \sin \left (3 \, d x + 3 \, c\right )}{12 \, d} + \frac {{\left (C a + B b\right )} \sin \left (2 \, d x + 2 \, c\right )}{4 \, d} + \frac {{\left (4 \, B a + 3 \, C b\right )} \sin \left (d x + c\right )}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorithm="giac")

[Out]

1/2*(C*a + B*b)*x + 1/12*C*b*sin(3*d*x + 3*c)/d + 1/4*(C*a + B*b)*sin(2*d*x + 2*c)/d + 1/4*(4*B*a + 3*C*b)*sin
(d*x + c)/d

________________________________________________________________________________________

maple [A]  time = 0.20, size = 85, normalized size = 1.01 \[ \frac {\frac {C b \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+B b \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a C \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a B \sin \left (d x +c \right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2),x)

[Out]

1/d*(1/3*C*b*(2+cos(d*x+c)^2)*sin(d*x+c)+B*b*(1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c)+a*C*(1/2*cos(d*x+c)*sin
(d*x+c)+1/2*d*x+1/2*c)+a*B*sin(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 79, normalized size = 0.94 \[ \frac {3 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} C a + 3 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} B b - 4 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} C b + 12 \, B a \sin \left (d x + c\right )}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorithm="maxima")

[Out]

1/12*(3*(2*d*x + 2*c + sin(2*d*x + 2*c))*C*a + 3*(2*d*x + 2*c + sin(2*d*x + 2*c))*B*b - 4*(sin(d*x + c)^3 - 3*
sin(d*x + c))*C*b + 12*B*a*sin(d*x + c))/d

________________________________________________________________________________________

mupad [B]  time = 1.76, size = 84, normalized size = 1.00 \[ \frac {B\,b\,x}{2}+\frac {C\,a\,x}{2}+\frac {B\,a\,\sin \left (c+d\,x\right )}{d}+\frac {3\,C\,b\,\sin \left (c+d\,x\right )}{4\,d}+\frac {B\,b\,\sin \left (2\,c+2\,d\,x\right )}{4\,d}+\frac {C\,a\,\sin \left (2\,c+2\,d\,x\right )}{4\,d}+\frac {C\,b\,\sin \left (3\,c+3\,d\,x\right )}{12\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(c + d*x) + C*cos(c + d*x)^2)*(a + b*cos(c + d*x)),x)

[Out]

(B*b*x)/2 + (C*a*x)/2 + (B*a*sin(c + d*x))/d + (3*C*b*sin(c + d*x))/(4*d) + (B*b*sin(2*c + 2*d*x))/(4*d) + (C*
a*sin(2*c + 2*d*x))/(4*d) + (C*b*sin(3*c + 3*d*x))/(12*d)

________________________________________________________________________________________

sympy [A]  time = 0.58, size = 170, normalized size = 2.02 \[ \begin {cases} \frac {B a \sin {\left (c + d x \right )}}{d} + \frac {B b x \sin ^{2}{\left (c + d x \right )}}{2} + \frac {B b x \cos ^{2}{\left (c + d x \right )}}{2} + \frac {B b \sin {\left (c + d x \right )} \cos {\left (c + d x \right )}}{2 d} + \frac {C a x \sin ^{2}{\left (c + d x \right )}}{2} + \frac {C a x \cos ^{2}{\left (c + d x \right )}}{2} + \frac {C a \sin {\left (c + d x \right )} \cos {\left (c + d x \right )}}{2 d} + \frac {2 C b \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac {C b \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} & \text {for}\: d \neq 0 \\x \left (a + b \cos {\relax (c )}\right ) \left (B \cos {\relax (c )} + C \cos ^{2}{\relax (c )}\right ) & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)**2),x)

[Out]

Piecewise((B*a*sin(c + d*x)/d + B*b*x*sin(c + d*x)**2/2 + B*b*x*cos(c + d*x)**2/2 + B*b*sin(c + d*x)*cos(c + d
*x)/(2*d) + C*a*x*sin(c + d*x)**2/2 + C*a*x*cos(c + d*x)**2/2 + C*a*sin(c + d*x)*cos(c + d*x)/(2*d) + 2*C*b*si
n(c + d*x)**3/(3*d) + C*b*sin(c + d*x)*cos(c + d*x)**2/d, Ne(d, 0)), (x*(a + b*cos(c))*(B*cos(c) + C*cos(c)**2
), True))

________________________________________________________________________________________